A Novel Deep Learning based Model to Defend Network Intrusion Detection System against Adversarial Attacks

31 Jul 2023  ·  Khushnaseeb Roshan, Aasim Zafar, Shiekh Burhan Ul Haque ·

Network Intrusion Detection System (NIDS) is an essential tool in securing cyberspace from a variety of security risks and unknown cyberattacks. A number of solutions have been implemented for Machine Learning (ML), and Deep Learning (DL) based NIDS. However, all these solutions are vulnerable to adversarial attacks, in which the malicious actor tries to evade or fool the model by injecting adversarial perturbed examples into the system. The main aim of this research work is to study powerful adversarial attack algorithms and their defence method on DL-based NIDS. Fast Gradient Sign Method (FGSM), Jacobian Saliency Map Attack (JSMA), Projected Gradient Descent (PGD) and Carlini & Wagner (C&W) are four powerful adversarial attack methods implemented against the NIDS. As a defence method, Adversarial Training is used to increase the robustness of the NIDS model. The results are summarized in three phases, i.e., 1) before the adversarial attack, 2) after the adversarial attack, and 3) after the adversarial defence. The Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS-2017) dataset is used for evaluation purposes with various performance measurements like f1-score, accuracy etc.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here