A novel algebraic approach to time-reversible evolutionary models

5 Sep 2023  ·  Marta Casanellas, Roser Homs Pons, Angélica Torres ·

In the last years, algebraic tools have been proven useful in phylogenetic reconstruction and model selection through the study of phylogenetic invariants. However, up to now, the models studied from an algebraic viewpoint are either too general or too restrictive (as group-based models with a uniform stationary distribution) to be used in practice. In this paper we provide a new framework to study time-reversible models, which are the most widely used by biologists. In our approach we consider algebraic time-reversible models on phylogenetic trees (as defined by Allman and Rhodes) and introduce a new inner product to make all transition matrices of the process diagonalizable through the same orthogonal eigenbasis. This framework generalizes the Fourier transform widely used to work with group-based models and recovers some of the well known results. As illustration, we combine our technique with algebraic geometry tools to provide relevant phylogenetic invariants for trees evolving under the Tamura-Nei model of nucleotide substitution.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here