A Non-Intrusive Neural Quality Assessment Model for Surface Electromyography Signals

8 Feb 2024  ·  Cho-Yuan Lee, Kuan-Chen Wang, Kai-Chun Liu, Xugang Lu, Ping-Cheng Yeh, Yu Tsao ·

In practical scenarios involving the measurement of surface electromyography (sEMG) in muscles, particularly those areas near the heart, one of the primary sources of contamination is the presence of electrocardiogram (ECG) signals. To assess the quality of real-world sEMG data more effectively, this study proposes QASE-net, a new non-intrusive model that predicts the SNR of sEMG signals. QASE-net combines CNN-BLSTM with attention mechanisms and follows an end-to-end training strategy. Our experimental framework utilizes real-world sEMG and ECG data from two open-access databases, the Non-Invasive Adaptive Prosthetics Database and the MIT-BIH Normal Sinus Rhythm Database, respectively. The experimental results demonstrate the superiority of QASE-net over the previous assessment model, exhibiting significantly reduced prediction errors and notably higher linear correlations with the ground truth. These findings show the potential of QASE-net to substantially enhance the reliability and precision of sEMG quality assessment in practical applications.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here