A New Deep Hybrid Boosted and Ensemble Learning-based Brain Tumor Analysis using MRI

14 Jan 2022  ·  Mirza Mumtaz Zahoor, Shahzad Ahmad Qureshi, Saddam Hussain Khan, Asifullah Khan ·

Brain tumors analysis is important in timely diagnosis and effective treatment to cure patients. Tumor analysis is challenging because of tumor morphology like size, location, texture, and heteromorphic appearance in the medical images. In this regard, a novel two-phase deep learning-based framework is proposed to detect and categorize brain tumors in magnetic resonance images (MRIs). In the first phase, a novel deep boosted features and ensemble classifiers (DBF-EC) scheme is proposed to detect tumor MRI images from healthy individuals effectively. The deep boosted feature space is achieved through the customized and well-performing deep convolutional neural networks (CNNs), and consequently, fed into the ensemble of machine learning (ML) classifiers. While in the second phase, a new hybrid features fusion-based brain tumor classification approach is proposed, comprised of dynamic-static feature and ML classifier to categorize different tumor types. The dynamic features are extracted from the proposed BRAIN-RENet CNN, which carefully learns heteromorphic and inconsistent behavior of various tumors, while the static features are extracted using HOG. The effectiveness of the proposed two-phase brain tumor analysis framework is validated on two standard benchmark datasets; collected from Kaggle and Figshare containing different types of tumor, including glioma, meningioma, pituitary, and normal images. Experimental results proved that the proposed DBF-EC detection scheme outperforms and achieved accuracy (99.56%), precision (0.9991), recall (0.9899), F1-Score (0.9945), MCC (0.9892), and AUC-PR (0.9990). While the classification scheme, the joint employment of the deep features fusion of proposed BRAIN-RENet and HOG features improves performance significantly in terms of recall (0.9913), precision (0.9906), F1-Score (0.9909), and accuracy (99.20%) on diverse datasets.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here