A New Channel Subspace Characterization for Channel Estimation in RIS-Aided Communications

4 Apr 2023  ·  Mehdi Haghshenas, Parisa Ramezani, Maurizio Magarini, Emil Björnson ·

A reconfigurable intelligent surface (RIS) is a holographic MIMO surface composed of a large number of passive elements that can induce adjustable phase shifts to the impinging waves. By creating virtual line-of-sight (LOS) paths between the transmitter and the receiver, RIS can be a game changer for millimeter-wave (mmWave) communication systems that typically suffer from severe signal attenuation. Reaping the benefits of RIS, however, relies on the accuracy of the channel estimation, which is a challenging task due to the large number of RIS elements. Specifically, conventional channel estimators require a pilot overhead equal to the number of RIS elements, which is impractical. Herein, we propose a novel way to approximately represent the RIS channels in a lower-dimensional subspace and derive the basis vectors for the identified subspace. We use this channel structure to only send pilots in this subspace, thereby vastly saving on the pilot overhead. Numerical results demonstrate that when the RIS has an element spacing of a quarter of the wavelength, our method reduces the pilot overhead by 80% with retained or even improved performance.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here