A multi-category inverse design neural network and its application to diblock copolymers

12 Oct 2022  ·  Dan Wei, Tiejun Zhou, Yunqing Huang, Kai Jiang ·

In this work, we design a multi-category inverse design neural network to map ordered periodic structure to physical parameters. The neural network model consists of two parts, a classifier and Structure-Parameter-Mapping (SPM) subnets. The classifier is used to identify structure, and the SPM subnets are used to predict physical parameters for desired structures. We also present an extensible reciprocal-space data augmentation method to guarantee the rotation and translation invariant of periodic structures. We apply the proposed network model and data augmentation method to two-dimensional diblock copolymers based on the Landau-Brazovskii model. Results show that the multi-category inverse design neural network is high accuracy in predicting physical parameters for desired structures. Moreover, the idea of multi-categorization can also be extended to other inverse design problems.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here