A Minimax Probability Machine for Non-Decomposable Performance Measures

28 Feb 2021  ·  JunRu Luo, Hong Qiao, Bo Zhang ·

Imbalanced classification tasks are widespread in many real-world applications. For such classification tasks, in comparison with the accuracy rate, it is usually much more appropriate to use non-decomposable performance measures such as the Area Under the receiver operating characteristic Curve (AUC) and the $F_\beta$ measure as the classification criterion since the label class is imbalanced. On the other hand, the minimax probability machine is a popular method for binary classification problems and aims at learning a linear classifier by maximizing the accuracy rate, which makes it unsuitable to deal with imbalanced classification tasks. The purpose of this paper is to develop a new minimax probability machine for the $F_\beta$ measure, called MPMF, which can be used to deal with imbalanced classification tasks. A brief discussion is also given on how to extend the MPMF model for several other non-decomposable performance measures listed in the paper. To solve the MPMF model effectively, we derive its equivalent form which can then be solved by an alternating descent method to learn a linear classifier. Further, the kernel trick is employed to derive a nonlinear MPMF model to learn a nonlinear classifier. Several experiments on real-world benchmark datasets demonstrate the effectiveness of our new model.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here