Paper

A Metric-learning based framework for Support Vector Machines and Multiple Kernel Learning

Most metric learning algorithms, as well as Fisher's Discriminant Analysis (FDA), optimize some cost function of different measures of within-and between-class distances. On the other hand, Support Vector Machines(SVMs) and several Multiple Kernel Learning (MKL) algorithms are based on the SVM large margin theory. Recently, SVMs have been analyzed from SVM and metric learning, and to develop new algorithms that build on the strengths of each. Inspired by the metric learning interpretation of SVM, we develop here a new metric-learning based SVM framework in which we incorporate metric learning concepts within SVM. We extend the optimization problem of SVM to include some measure of the within-class distance and along the way we develop a new within-class distance measure which is appropriate for SVM. In addition, we adopt the same approach for MKL and show that it can be also formulated as a Mahalanobis metric learning problem. Our end result is a number of SVM/MKL algorithms that incorporate metric learning concepts. We experiment with them on a set of benchmark datasets and observe important predictive performance improvements.

Results in Papers With Code
(↓ scroll down to see all results)