A maximal inequality for local empirical processes under weak dependence

3 Jul 2023  ·  Luis Alvarez, Cristine Pinto ·

We introduce a maximal inequality for a local empirical process under strongly mixing data. Local empirical processes are defined as the (local) averages $\frac{1}{nh}\sum_{i=1}^n \mathbf{1}\{x - h \leq X_i \leq x+h\}f(Z_i)$, where $f$ belongs to a class of functions, $x \in \mathbb{R}$ and $h > 0$ is a bandwidth. Our nonasymptotic bounds control estimation error uniformly over the function class, evaluation point $x$ and bandwidth $h$. They are also general enough to accomodate function classes whose complexity increases with $n$. As an application, we apply our bounds to function classes that exhibit polynomial decay in their uniform covering numbers. When specialized to the problem of kernel density estimation, our bounds reveal that, under weak dependence with exponential decay, these estimators achieve the same (up to a logarithmic factor) sharp uniform-in-bandwidth rates derived in the iid setting by \cite{Einmahl2005}.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here