A Decision Support System for Safer Airplane Landings: Predicting Runway Conditions Using XGBoost and Explainable AI

1 Jul 2021  ·  Alise Danielle Midtfjord, Riccardo De Bin, Arne Bang Huseby ·

The presence of snow and ice on runway surfaces reduces the available tire-pavement friction needed for retardation and directional control and causes potential economic and safety threats for the aviation industry during the winter seasons. To activate appropriate safety procedures, pilots need accurate and timely information on the actual runway surface conditions. In this study, XGBoost is used to create a combined runway assessment system, which includes a classification model to identify slippery conditions and a regression model to predict the level of slipperiness. The models are trained on weather data and runway reports. The runway surface conditions are represented by the tire-pavement friction coefficient, which is estimated from flight sensor data from landing aircrafts. The XGBoost models are combined with SHAP approximations to provide a reliable decision support system for airport operators, which can contribute to safer and more economic operations of airport runways. To evaluate the performance of the prediction models, they are compared to several state-of-the-art runway assessment methods. The XGBoost models identify slippery runway conditions with a ROC AUC of 0.95, predict the friction coefficient with a MAE of 0.0254, and outperforms all the previous methods. The results show the strong abilities of machine learning methods to model complex, physical phenomena with a good accuracy. Published version: https://doi.org/10.1016/j.coldregions.2022.103556.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods