A Lower Bound for the Optimization of Finite Sums

2 Oct 2014  ·  Alekh Agarwal, Leon Bottou ·

This paper presents a lower bound for optimizing a finite sum of $n$ functions, where each function is $L$-smooth and the sum is $\mu$-strongly convex. We show that no algorithm can reach an error $\epsilon$ in minimizing all functions from this class in fewer than $\Omega(n + \sqrt{n(\kappa-1)}\log(1/\epsilon))$ iterations, where $\kappa=L/\mu$ is a surrogate condition number. We then compare this lower bound to upper bounds for recently developed methods specializing to this setting. When the functions involved in this sum are not arbitrary, but based on i.i.d. random data, then we further contrast these complexity results with those for optimal first-order methods to directly optimize the sum. The conclusion we draw is that a lot of caution is necessary for an accurate comparison, and identify machine learning scenarios where the new methods help computationally.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here