A Learning-based Approach to Joint Content Caching and Recommendation at Base Stations

22 Jan 2018  ·  Dong Liu, Chenyang Yang ·

Recommendation system is able to shape user demands, which can be used for boosting caching gain. In this paper, we jointly optimize content caching and recommendation at base stations to maximize the caching gain meanwhile not compromising the user preference. We first propose a model to capture the impact of recommendation on user demands, which is controlled by a user-specific psychological threshold. We then formulate a joint caching and recommendation problem maximizing the successful offloading probability, which is a mixed integer programming problem. We develop a hierarchical iterative algorithm to solve the problem when the threshold is known. Since the user threshold is unknown in practice, we proceed to propose an $\varepsilon$-greedy algorithm to find the solution by learning the threshold via interactions with users. Simulation results show that the proposed algorithms improve the successful offloading probability compared with prior works with/without recommendation. The $\varepsilon$-greedy algorithm learns the user threshold quickly, and achieves more than $1-\varepsilon$ of the performance obtained by the algorithm with known threshold.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here