A Framework for CSI-Based Indoor Localization with 1D Convolutional Neural Networks

17 May 2022  ·  Liping Wang, Sudeep Pasricha ·

Modern indoor localization techniques are essential to overcome the weak GPS coverage in indoor environments. Recently, considerable progress has been made in Channel State Information (CSI) based indoor localization with signal fingerprints. However, CSI signal patterns can be complicated in the large and highly dynamic indoor spaces with complex interiors, thus a solution for solving this issue is urgently needed to expand the applications of CSI to a broader indoor space. In this paper, we propose an end-to-end solution including data collection, pattern clustering, denoising, calibration and a lightweight one-dimensional convolutional neural network (1D CNN) model with CSI fingerprinting to tackle this problem. We have also created and plan to open source a CSI dataset with a large amount of data collected across complex indoor environments at Colorado State University. Experiments indicate that our approach achieves up to 68.5% improved performance (mean distance error) with minimal number of parameters, compared to the best-known deep machine learning and CSI-based indoor localization works.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods