A First Empirical Study of Emphatic Temporal Difference Learning

11 May 2017  ·  Sina Ghiassian, Banafsheh Rafiee, Richard S. Sutton ·

In this paper we present the first empirical study of the emphatic temporal-difference learning algorithm (ETD), comparing it with conventional temporal-difference learning, in particular, with linear TD(0), on on-policy and off-policy variations of the Mountain Car problem. The initial motivation for developing ETD was that it has good convergence properties under off-policy training (Sutton, Mahmood and White 2016), but it is also a new algorithm for the on-policy case. In both our on-policy and off-policy experiments, we found that each method converged to a characteristic asymptotic level of error, with ETD better than TD(0). TD(0) achieved a still lower error level temporarily before falling back to its higher asymptote, whereas ETD never showed this kind of "bounce". In the off-policy case (in which TD(0) is not guaranteed to converge), ETD was significantly slower.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here