A Finite-State Fixed-Corridor Model for UAS Traffic Management

12 Apr 2022  ·  Hamid Emadi, Ella Atkins, Hossein Rastgoftar ·

This paper proposes a physics-inspired solution for low altitude Unmanned Aircraft System (UAS) Traffic Management (UTM) in urban areas. We decompose UTM into spatial and temporal planning problems. For the spatial planning problem, we use the principles of Eulerian continuum mechanics to safely and optimally allocate finite airspace to a UAS. To this end, the finite airspace is partitioned into planned and unplanned subspaces with unplanned subspace(s) or zone(s) enclosing buildings and restricted no-fly regions. The planned subspace is divided into navigable channels that safely wrap unplanned zone(s). We model the airspace planning problem as a Markov Decision Process (MDP) with states defined based on spatial and temporal airspace features and actions authorizing transitions between safe navigable channels. We apply the proposed traffic management solution to plan safe coordination of small UAS in the airspace above downtown Tucson, Arizona.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here