A Faster Maximum Cardinality Matching Algorithm with Applications in Machine Learning

Maximum cardinality bipartite matching is an important graph optimization problem with several applications. For instance, maximum cardinality matching in a $\delta$-disc graph can be used in the computation of the bottleneck matching as well as the $\infty$-Wasserstein and the Lévy-Prokhorov distances between probability distributions. For any point sets $A, B \subset \mathbb{R}^2$, the $\delta$-disc graph is a bipartite graph formed by connecting every pair of points $(a,b) \in A\times B$ by an edge if the Euclidean distance between them is at most $\delta$. Using the classical Hopcroft-Karp algorithm, a maximum-cardinality matching on any $\delta$-disc graph can be found in $\tilde{O}(n^{3/2})$ time.~\footnote{We use $\tilde{O}(\cdot)$ to suppress poly-logarithmic terms in the complexity.} In this paper, we present a simplification of a recent algorithm (Lahn and Raghvendra, JoCG 2021) for the maximum cardinality matching problem and describe how a maximum cardinality matching in a $\delta$-disc graph can be computed asymptotically faster than $O(n^{3/2})$ time for any moderately dense point set. As applications, we show that if $A$ and $B$ are point sets drawn uniformly at random from a unit square, an exact bottleneck matching can be computed in $\tilde{O}(n^{4/3})$ time. On the other hand, experiments suggest that the Hopcroft-Karp algorithm seems to take roughly $\Theta (n^{3/2})$ time for this case. This translates to substantial improvements in execution time for larger inputs.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here