A Deterministic Gradient-Based Approach to Avoid Saddle Points

21 Jan 2019  ·  Lisa Maria Kreusser, Stanley J. Osher, Bao Wang ·

Loss functions with a large number of saddle points are one of the major obstacles for training modern machine learning models efficiently. First-order methods such as gradient descent are usually the methods of choice for training machine learning models. However, these methods converge to saddle points for certain choices of initial guesses. In this paper, we propose a modification of the recently proposed Laplacian smoothing gradient descent [Osher et al., arXiv:1806.06317], called modified Laplacian smoothing gradient descent (mLSGD), and demonstrate its potential to avoid saddle points without sacrificing the convergence rate. Our analysis is based on the attraction region, formed by all starting points for which the considered numerical scheme converges to a saddle point. We investigate the attraction region's dimension both analytically and numerically. For a canonical class of quadratic functions, we show that the dimension of the attraction region for mLSGD is floor((n-1)/2), and hence it is significantly smaller than that of the gradient descent whose dimension is n-1.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here