Deep Variational Free Energy Approach to Dense Hydrogen

13 Sep 2022  ·  Hao Xie, Zi-Hang Li, Han Wang, Linfeng Zhang, Lei Wang ·

We developed a deep generative model-based variational free energy approach to the equations of state of dense hydrogen. We employ a normalizing flow network to model the proton Boltzmann distribution and a fermionic neural network to model the electron wave function at given proton positions. By jointly optimizing the two neural networks we reached a comparable variational free energy to the previous coupled electron-ion Monte Carlo calculation. The predicted equation of state of dense hydrogen under planetary conditions is denser than the findings of ab initio molecular dynamics calculation and empirical chemical model. Moreover, direct access to the entropy and free energy of dense hydrogen opens new opportunities in planetary modeling and high-pressure physics research.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here