A Mobile Data-Driven Hierarchical Deep Reinforcement Learning Approach for Real-time Demand-Responsive Railway Rescheduling and Station Overcrowding Mitigation

23 Aug 2023  ·  Enze Liu, Zhiyuan Lin, Judith Y. T. Wang, Hong Chen ·

Real-time railway rescheduling is an important technique to enable operational recovery in response to unexpected and dynamic conditions in a timely and flexible manner. Current research relies mostly on OD based data and model-based methods for estimating train passenger demands. These approaches primarily focus on averaged disruption patterns, often overlooking the immediate uneven distribution of demand over time. In reality, passenger demand deviates significantly from predictions, especially during a disaster. Disastrous situations such as flood in Zhengzhou, China in 2022 has created not only unprecedented effect on Zhengzhou railway station itself, which is a major railway hub in China, but also other major hubs connected to Zhengzhou, e.g., Xi'an, the closest hub west of Zhengzhou. In this study, we define a real-time demand-responsive (RTDR) railway rescheduling problem focusing two specific aspects, namely, volatility of the demand, and management of station crowdedness. For the first time, we propose a data-driven approach using real-time mobile data (MD) to deal with this RTDR problem. A hierarchical deep reinforcement learning (HDRL) framework is designed to perform real-time rescheduling in a demand-responsive manner. The use of MD has enabled the modelling of passenger dynamics in response to train delays and station crowdedness, and a real-time optimisation for rescheduling of train services in view of the change in demand as a result of passengers' behavioural response to disruption. Results show that the agent can steadily satisfy over 62% of the demand with only 61% of the original rolling stock, ensuring continuous operations without overcrowding. Moreover, the agent exhibits adaptability when transferred to a new environment with increased demand, highlighting its effectiveness in addressing unforeseen disruptions in real-time settings.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods