A Deep Learning Framework for Verilog Autocompletion Towards Design and Verification Automation

26 Apr 2023  ·  Enrique Dehaerne, Bappaditya Dey, Sandip Halder, Stefan De Gendt ·

Innovative Electronic Design Automation (EDA) solutions are important to meet the design requirements for increasingly complex electronic devices. Verilog, a hardware description language, is widely used for the design and verification of digital circuits and is synthesized using specific EDA tools. However, writing code is a repetitive and time-intensive task. This paper proposes, primarily, a novel deep learning framework for training a Verilog autocompletion model and, secondarily, a Verilog dataset of files and snippets obtained from open-source repositories. The framework involves integrating models pretrained on general programming language data and finetuning them on a dataset curated to be similar to a target downstream task. This is validated by comparing different pretrained models trained on different subsets of the proposed Verilog dataset using multiple evaluation metrics. These experiments demonstrate that the proposed framework achieves better BLEU, ROUGE-L, and chrF scores by 9.5%, 6.7%, and 6.9%, respectively, compared to a model trained from scratch. Code and data are made available at: https://github.com/99EnriqueD/verilog_autocompletion .

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here