A deep-learning-based approach for fast and robust steel surface defects classification

Automatic visual recognition of steel surface defects provides critical functionality to facilitate quality control of steel strip production. In this paper, we present a compact yet effective convolutional neural network (CNN) model, which emphasizes the training of low-level features and incorporates multiple receptive fields, to achieve fast and accurate steel surface defect classification. Our proposed method adopts the pre-trained SqueezeNet as the backbone architecture. It only requires a small amount of defect-specific training samples to achieve high- accuracy recognition on a diversity-enhanced testing dataset of steel surface defects which contains severe non- uniform illumination, camera noise, and motion blur. Moreover, our proposed light-weight CNN model can meet the requirement of real-time online inspection, running over 100 fps on a computer equipped with a single NVIDIA TITAN X Graphics Processing Unit (12G memory). Codes and a diversity-enhanced testing dataset will be made publicly available.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods