A Critical Escape Probability Formulation for Enhancing the Transient Stability of Power Systems with System Parameter Design

13 Sep 2023  ·  Xian Wu, Kaihua Xi, Aijie Cheng, Chenghui Zhang, Hai Xiang Lin ·

For the enhancement of the transient stability of power systems, the key is to define a quantitative optimization formulation with system parameters as decision variables. In this paper, we model the disturbances by Gaussian noise and define a metric named Critical Escape Probability (CREP) based on the invariant probability measure of a linearised stochastic processes. CREP characterizes the probability of the state escaping from a critical set. CREP involves all the system parameters and reflects the size of the basin of attraction of the nonlinear systems. An optimization framework that minimizes CREP with the system parameters as decision variablesis is presented. Simulations show that the mean first hitting time when the state hits the boundary of the critical set, that is often used to describe the stability of nonlinear systems, is dramatically increased by minimizing CREP. This indicates that the transient stability of the system is effectively enhanced. It also shown that suppressing the state fluctuations only is insufficient for enhancing the transient stability. In addition, the famous Braess' paradox which also exists in power systems is revisited. Surprisingly, it turned out that the paradoxes identified by the traditional metric may not exist according to CREP. This new metric opens a new avenue for the transient stability analysis of future power systems integrated with large amounts of renewable energy.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here