A Counterfactual Safety Margin Perspective on the Scoring of Autonomous Vehicles' Riskiness

2 Aug 2023  ·  Alessandro Zanardi, Andrea Censi, Margherita Atzei, Luigi Di Lillo, Emilio Frazzoli ·

Autonomous Vehicles (AVs) promise a range of societal advantages, including broader access to mobility, reduced road accidents, and enhanced transportation efficiency. However, evaluating the risks linked to AVs is complex due to limited historical data and the swift progression of technology. This paper presents a data-driven framework for assessing the risk of different AVs' behaviors in various operational design domains (ODDs), based on counterfactual simulations of "misbehaving" road users. We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision. This methodology not only pinpoints the most critical scenarios but also quantifies the (relative) risk's frequency and severity concerning AVs. Importantly, we show that our approach is applicable even when the AV's behavioral policy remains undisclosed, through worst- and best-case analyses, benefiting external entities like regulators and risk evaluators. Our experimental outcomes demonstrate the correlation between the safety margin, the quality of the driving policy, and the ODD, shedding light on the relative risks of different AV providers. Overall, this work contributes to the safety assessment of AVs and addresses legislative and insurance concerns surrounding this burgeoning technology.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here