A Contraction Approach to Model-based Reinforcement Learning

18 Sep 2020  ·  Ting-Han Fan, Peter J. Ramadge ·

Despite its experimental success, Model-based Reinforcement Learning still lacks a complete theoretical understanding. To this end, we analyze the error in the cumulative reward using a contraction approach. We consider both stochastic and deterministic state transitions for continuous (non-discrete) state and action spaces. This approach doesn't require strong assumptions and can recover the typical quadratic error to the horizon. We prove that branched rollouts can reduce this error and are essential for deterministic transitions to have a Bellman contraction. Our analysis of policy mismatch error also applies to Imitation Learning. In this case, we show that GAN-type learning has an advantage over Behavioral Cloning when its discriminator is well-trained.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here