A Combinatorial Approach to Robust PCA

28 Nov 2023  ·  Weihao Kong, Mingda Qiao, Rajat Sen ·

We study the problem of recovering Gaussian data under adversarial corruptions when the noises are low-rank and the corruptions are on the coordinate level. Concretely, we assume that the Gaussian noises lie in an unknown $k$-dimensional subspace $U \subseteq \mathbb{R}^d$, and $s$ randomly chosen coordinates of each data point fall into the control of an adversary. This setting models the scenario of learning from high-dimensional yet structured data that are transmitted through a highly-noisy channel, so that the data points are unlikely to be entirely clean. Our main result is an efficient algorithm that, when $ks^2 = O(d)$, recovers every single data point up to a nearly-optimal $\ell_1$ error of $\tilde O(ks/d)$ in expectation. At the core of our proof is a new analysis of the well-known Basis Pursuit (BP) method for recovering a sparse signal, which is known to succeed under additional assumptions (e.g., incoherence or the restricted isometry property) on the underlying subspace $U$. In contrast, we present a novel approach via studying a natural combinatorial problem and show that, over the randomness in the support of the sparse signal, a high-probability error bound is possible even if the subspace $U$ is arbitrary.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here