A Collision-Aware Cable Grasping Method in Cluttered Environment

22 Feb 2024  ·  Lei Zhang, Kaixin Bai, Qiang Li, Zhaopeng Chen, Jianwei Zhang ·

We introduce a Cable Grasping-Convolutional Neural Network designed to facilitate robust cable grasping in cluttered environments. Utilizing physics simulations, we generate an extensive dataset that mimics the intricacies of cable grasping, factoring in potential collisions between cables and robotic grippers. We employ the Approximate Convex Decomposition technique to dissect the non-convex cable model, with grasp quality autonomously labeled based on simulated grasping attempts. The CG-CNN is refined using this simulated dataset and enhanced through domain randomization techniques. Subsequently, the trained model predicts grasp quality, guiding the optimal grasp pose to the robot controller for execution. Grasping efficacy is assessed across both synthetic and real-world settings. Given our model implicit collision sensitivity, we achieved commendable success rates of 92.3% for known cables and 88.4% for unknown cables, surpassing contemporary state-of-the-art approaches. Supplementary materials can be found at https://leizhang-public.github.io/cg-cnn/ .

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here