A Broad Ensemble Learning System for Drifting Stream Classification

7 Oct 2021  ·  Sepehr Bakhshi, Pouya Ghahramanian, Hamed Bonab, Fazli Can ·

In a data stream environment, classification models must handle concept drift efficiently and effectively. Ensemble methods are widely used for this purpose; however, the ones available in the literature either use a large data chunk to update the model or learn the data one by one. In the former, the model may miss the changes in the data distribution, and in the latter, the model may suffer from inefficiency and instability. To address these issues, we introduce a novel ensemble approach based on the Broad Learning System (BLS), where mini chunks are used at each update. BLS is an effective lightweight neural architecture recently developed for incremental learning. Although it is fast, it requires huge data chunks for effective updates, and is unable to handle dynamic changes observed in data streams. Our proposed approach named Broad Ensemble Learning System (BELS) uses a novel updating method that significantly improves best-in-class model accuracy. It employs an ensemble of output layers to address the limitations of BLS and handle drifts. Our model tracks the changes in the accuracy of the ensemble components and react to these changes. We present the mathematical derivation of BELS, perform comprehensive experiments with 20 datasets that demonstrate the adaptability of our model to various drift types, and provide hyperparameter and ablation analysis of our proposed model. Our experiments show that the proposed approach outperforms nine state-of-the-art baselines and supplies an overall improvement of 13.28% in terms of average prequential accuracy.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here