A Bayesian approach for extracting free energy profiles from cryo-electron microscopy experiments using a path collective variable

Cryo-electron microscopy (cryo-EM) extracts single-particle density projections of individual biomolecules. Although cryo-EM is widely used for 3D reconstruction, due to its single-particle nature, it has the potential to provide information about the biomolecule's conformational variability and underlying free energy landscape. However, treating cryo-EM as a single-molecule technique is challenging because of the low signal-to-noise ratio (SNR) in the individual particles. In this work, we developed the cryo-BIFE method, cryo-EM Bayesian Inference of Free Energy profiles, that uses a path collective variable to extract free energy profiles and their uncertainties from cryo-EM images. We tested the framework over several synthetic systems, where we controlled the imaging parameters and conditions. We found that for realistic cryo-EM environments and relevant biomolecular systems, it is possible to recover the underlying free energy, with the pose accuracy and SNR as crucial determinants. Then, we used the method to study the conformational transitions of a calcium-activated channel with real cryo-EM particles. Interestingly, we recover the most probable conformation (used to generate a high resolution reconstruction of the calcium-bound state), and we find two additional meta-stable states, one which corresponds to the calcium-unbound conformation. As expected for turnover transitions within the same sample, the activation barriers are of the order of a couple $k_BT$. Extracting free energy profiles from cryo-EM will enable a more complete characterization of the thermodynamic ensemble of biomolecules.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here