3D Well-composed Polyhedral Complexes

12 Mar 2014  ·  Rocio Gonzalez-Diaz, Maria-Jose Jimenez, Belen Medrano ·

A binary three-dimensional (3D) image $I$ is well-composed if the boundary surface of its continuous analog is a 2D manifold. Since 3D images are not often well-composed, there are several voxel-based methods ("repairing" algorithms) for turning them into well-composed ones but these methods either do not guarantee the topological equivalence between the original image and its corresponding well-composed one or involve sub-sampling the whole image. In this paper, we present a method to locally "repair" the cubical complex $Q(I)$ (embedded in $\mathbb{R}^3$) associated to $I$ to obtain a polyhedral complex $P(I)$ homotopy equivalent to $Q(I)$ such that the boundary of every connected component of $P(I)$ is a 2D manifold. The reparation is performed via a new codification system for $P(I)$ under the form of a 3D grayscale image that allows an efficient access to cells and their faces.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here