3D Simulation for Robot Arm Control with Deep Q-Learning

13 Sep 2016  ·  Stephen James, Edward Johns ·

Recent trends in robot arm control have seen a shift towards end-to-end solutions, using deep reinforcement learning to learn a controller directly from raw sensor data, rather than relying on a hand-crafted, modular pipeline. However, the high dimensionality of the state space often means that it is impractical to generate sufficient training data with real-world experiments. As an alternative solution, we propose to learn a robot controller in simulation, with the potential of then transferring this to a real robot. Building upon the recent success of deep Q-networks, we present an approach which uses 3D simulations to train a 7-DOF robotic arm in a control task without any prior knowledge. The controller accepts images of the environment as its only input, and outputs motor actions for the task of locating and grasping a cube, over a range of initial configurations. To encourage efficient learning, a structured reward function is designed with intermediate rewards. We also present preliminary results in direct transfer of policies over to a real robot, without any further training.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here