A framework for deep learning emulation of numerical models with a case study in satellite remote sensing

29 Oct 2019  ·  Kate Duffy, Thomas Vandal, Weile Wang, Ramakrishna Nemani, Auroop R. Ganguly ·

Numerical models based on physics represent the state-of-the-art in earth system modeling and comprise our best tools for generating insights and predictions. Despite rapid growth in computational power, the perceived need for higher model resolutions overwhelms the latest-generation computers, reducing the ability of modelers to generate simulations for understanding parameter sensitivities and characterizing variability and uncertainty. Thus, surrogate models are often developed to capture the essential attributes of the full-blown numerical models. Recent successes of machine learning methods, especially deep learning, across many disciplines offer the possibility that complex nonlinear connectionist representations may be able to capture the underlying complex structures and nonlinear processes in earth systems. A difficult test for deep learning-based emulation, which refers to function approximation of numerical models, is to understand whether they can be comparable to traditional forms of surrogate models in terms of computational efficiency while simultaneously reproducing model results in a credible manner. A deep learning emulation that passes this test may be expected to perform even better than simple models with respect to capturing complex processes and spatiotemporal dependencies. Here we examine, with a case study in satellite-based remote sensing, the hypothesis that deep learning approaches can credibly represent the simulations from a surrogate model with comparable computational efficiency. Our results are encouraging in that the deep learning emulation reproduces the results with acceptable accuracy and often even faster performance. We discuss the broader implications of our results in light of the pace of improvements in high-performance implementations of deep learning as well as the growing desire for higher-resolution simulations in the earth sciences.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods