Improving the Results of De novo Peptide Identification via Tandem Mass Spectrometry Using a Genetic Programming-based Scoring Function for Re-ranking Peptide-Spectrum Matches

12 Aug 2019  ·  Samaneh Azari, Bing Xue, Mengjie Zhang, Lifeng Peng ·

De novo peptide sequencing algorithms have been widely used in proteomics to analyse tandem mass spectra (MS/MS) and assign them to peptides, but quality-control methods to evaluate the confidence of de novo peptide sequencing are lagging behind. A fundamental part of a quality-control method is the scoring function used to evaluate the quality of peptide-spectrum matches (PSMs). Here, we propose a genetic programming (GP) based method, called GP-PSM, to learn a PSM scoring function for improving the rate of confident peptide identification from MS/MS data. The GP method learns from thousands of MS/MS spectra. Important characteristics about goodness of the matches are extracted from the learning set and incorporated into the GP scoring functions. We compare GP-PSM with two methods including Support Vector Regression (SVR) and Random Forest (RF). The GP method along with RF and SVR, each is used for post-processing the results of peptide identification by PEAKS, a commonly used de novo sequencing method. The results show that GP-PSM outperforms RF and SVR and discriminates accurately between correct and incorrect PSMs. It correctly assigns peptides to 10% more spectra on an evaluation dataset containing 120 MS/MS spectra and decreases the false positive rate (FPR) of peptide identification.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here