Generalization in Generative Adversarial Networks: A Novel Perspective from Privacy Protection

In this paper, we aim to understand the generalization properties of generative adversarial networks (GANs) from a new perspective of privacy protection. Theoretically, we prove that a differentially private learning algorithm used for training the GAN does not overfit to a certain degree, i.e., the generalization gap can be bounded. Moreover, some recent works, such as the Bayesian GAN, can be re-interpreted based on our theoretical insight from privacy protection. Quantitatively, to evaluate the information leakage of well-trained GAN models, we perform various membership attacks on these models. The results show that previous Lipschitz regularization techniques are effective in not only reducing the generalization gap but also alleviating the information leakage of the training dataset.

PDF Abstract NeurIPS 2019 PDF NeurIPS 2019 Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods