Solving zero-sum extensive-form games with arbitrary payoff uncertainty models

24 Apr 2019  ·  Juan Leni, John Levine, John Quigley ·

Modeling strategic conflict from a game theoretical perspective involves dealing with epistemic uncertainty. Payoff uncertainty models are typically restricted to simple probability models due to computational restrictions. Recent breakthroughs Artificial Intelligence (AI) research applied to Poker have resulted in novel approximation approaches such as counterfactual regret minimization, that can successfully deal with large-scale imperfect games. By drawing from these ideas, this work addresses the problem of arbitrary continuous payoff distributions. We propose a method, Harsanyi-Counterfactual Regret Minimization, to solve two-player zero-sum extensive-form games with arbitrary payoff distribution models. Given a game $\Gamma$, using a Harsanyi transformation we generate a new game $\Gamma^\#$ to which we later apply Counterfactual Regret Minimization to obtain $\varepsilon$-Nash equilibria. We include numerical experiments showing how the method can be applied to a previously published problem.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here