An on-chip architecture for self-homodyned nonclassical light

4 Nov 2016  ·  Kevin A. Fischer, Yousif A. Kelaita, Neil V. Sapra, Constantin Dory, Konstantinos G. Lagoudakis, Kai Müller, Jelena Vučković ·

In the last decade, there has been remarkable progress on the practical integration of on-chip quantum photonic devices yet quantum state generators remain an outstanding challenge. Simultaneously, the quantum-dot photonic-crystal-resonator platform has demonstrated a versatility for creating nonclassical light with tunable quantum statistics, thanks to a newly discovered self-homodyning interferometric effect that preferentially selects the quantum light over the classical light when using an optimally tuned Fano resonance. In this work, we propose a general structure for the cavity quantum electrodynamical generation of quantum states from a waveguide-integrated version of the quantum-dot photonic-crystal-resonator platform, which is specifically tailored for preferential quantum state transmission. We support our results with rigorous Finite-Difference Time-Domain and quantum optical simulations, and show how our proposed device can serve as a robust generator of highly pure single- and even multi-photon states.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Quantum Physics Mesoscale and Nanoscale Physics Optics