Two Time-scale Update Rule

Introduced by Heusel et al. in GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium

The Two Time-scale Update Rule (TTUR) is an update rule for generative adversarial networks trained with stochastic gradient descent. TTUR has an individual learning rate for both the discriminator and the generator. The main premise is that the discriminator converges to a local minimum when the generator is fixed. If the generator changes slowly enough, then the discriminator still converges, since the generator perturbations are small. Besides ensuring convergence, the performance may also improve since the discriminator must first learn new patterns before they are transferred to the generator. In contrast, a generator which is overly fast, drives the discriminator steadily into new regions without capturing its gathered information.

Source: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium

Latest Papers

PAPER DATE
not-so-BigGAN: Generating High-Fidelity Images on a Small Compute Budget
Seungwook HanAkash SrivastavaCole HurwitzPrasanna SattigeriDavid D. Cox
2020-09-09
Neural Crossbreed: Neural Based Image Metamorphosis
Sanghun ParkKwanggyoon SeoJunyong Noh
2020-09-02
Instance Selection for GANs
Terrance DeVriesMichal DrozdzalGraham W. Taylor
2020-07-30
Interpolating GANs to Scaffold Autotelic Creativity
Ziv EpsteinOcéane BoulaisSkylar GordonMatt Groh
2020-07-21
Differentiable Augmentation for Data-Efficient GAN Training
| Shengyu ZhaoZhijian LiuJi LinJun-Yan ZhuSong Han
2020-06-18
Learning disconnected manifolds: a no GANs land
Ugo TanielianThibaut IssenhuthElvis DohmatobJeremie Mary
2020-06-08
Big GANs Are Watching You: Towards Unsupervised Object Segmentation with Off-the-Shelf Generative Models
| Andrey VoynovStanislav MorozovArtem Babenko
2020-06-08
A U-Net Based Discriminator for Generative Adversarial Networks
Edgar Schonfeld Bernt Schiele Anna Khoreva
2020-06-01
Network Fusion for Content Creation with Conditional INNs
Robin RombachPatrick EsserBjörn Ommer
2020-05-27
GANSpace: Discovering Interpretable GAN Controls
| Erik HärkönenAaron HertzmannJaakko LehtinenSylvain Paris
2020-04-06
Evolving Normalization-Activation Layers
| Hanxiao LiuAndrew BrockKaren SimonyanQuoc V. Le
2020-04-06
Feature Quantization Improves GAN Training
| Yang ZhaoChunyuan LiPing YuJianfeng GaoChangyou Chen
2020-04-05
BigGAN-based Bayesian reconstruction of natural images from human brain activity
Kai QiaoJian ChenLinyuan WangChi ZhangLi TongBin Yan
2020-03-13
Transformation-based Adversarial Video Prediction on Large-Scale Data
Pauline LucAidan ClarkSander DielemanDiego de Las CasasYotam DoronAlbin CassirerKaren Simonyan
2020-03-09
A U-Net Based Discriminator for Generative Adversarial Networks
| Edgar SchönfeldBernt SchieleAnna Khoreva
2020-02-28
Improved Consistency Regularization for GANs
Zhengli ZhaoSameer SinghHonglak LeeZizhao ZhangAugustus OdenaHan Zhang
2020-02-11
Reconstructing Natural Scenes from fMRI Patterns using BigBiGAN
Milad MozafariLeila ReddyRufin VanRullen
2020-01-31
Random Matrix Theory Proves that Deep Learning Representations of GAN-data Behave as Gaussian Mixtures
Mohamed El Amine SeddikCosme LouartMohamed TamaazoustiRomain Couillet
2020-01-21
CNN-generated images are surprisingly easy to spot... for now
| Sheng-Yu WangOliver WangRichard ZhangAndrew OwensAlexei A. Efros
2019-12-23
LOGAN: Latent Optimisation for Generative Adversarial Networks
| Yan WuJeff DonahueDavid BalduzziKaren SimonyanTimothy Lillicrap
2019-12-02
Detecting GAN generated errors
Xiru ZhuFengdi CheTianzi YangTzuyang YuDavid MegerGregory Dudek
2019-12-02
Semantic Hierarchy Emerges in Deep Generative Representations for Scene Synthesis
| Ceyuan YangYujun ShenBolei Zhou
2019-11-21
Improving sample diversity of a pre-trained, class-conditional GAN by changing its class embeddings
| Qi LiLong MaiMichael A. AlcornAnh Nguyen
2019-10-10
Adversarial Video Generation on Complex Datasets
Aidan ClarkJeff DonahueKaren Simonyan
2019-07-15
Large Scale Adversarial Representation Learning
| Jeff DonahueKaren Simonyan
2019-07-04
Improved Precision and Recall Metric for Assessing Generative Models
| Tuomas KynkäänniemiTero KarrasSamuli LaineJaakko LehtinenTimo Aila
2019-04-15
High-Fidelity Image Generation With Fewer Labels
| Mario LucicMichael TschannenMarvin RitterXiaohua ZhaiOlivier BachemSylvain Gelly
2019-03-06
Metropolis-Hastings view on variational inference and adversarial training
Kirill NeklyudovEvgenii EgorovPavel ShvechikovDmitry Vetrov
2018-10-16
Large Scale GAN Training for High Fidelity Natural Image Synthesis
| Andrew BrockJeff DonahueKaren Simonyan
2018-09-28
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium
| Martin HeuselHubert RamsauerThomas UnterthinerBernhard NesslerSepp Hochreiter
2017-06-26

Components

COMPONENT TYPE
🤖 No Components Found You can add them if they exist; e.g. Mask R-CNN uses RoIAlign

Categories