Search Results for author: Yuesong Shen

Found 9 papers, 7 papers with code

Variational Learning is Effective for Large Deep Networks

1 code implementation27 Feb 2024 Yuesong Shen, Nico Daheim, Bai Cong, Peter Nickl, Gian Maria Marconi, Clement Bazan, Rio Yokota, Iryna Gurevych, Daniel Cremers, Mohammad Emtiyaz Khan, Thomas Möllenhoff

We give extensive empirical evidence against the common belief that variational learning is ineffective for large neural networks.

ResolvNet: A Graph Convolutional Network with multi-scale Consistency

no code implementations30 Sep 2023 Christian Koke, Abhishek Saroha, Yuesong Shen, Marvin Eisenberger, Daniel Cremers

To remedy these shortcomings, we introduce ResolvNet, a flexible graph neural network based on the mathematical concept of resolvents.

Graph Learning

Beyond In-Domain Scenarios: Robust Density-Aware Calibration

1 code implementation10 Feb 2023 Christian Tomani, Futa Waseda, Yuesong Shen, Daniel Cremers

While existing post-hoc calibration methods achieve impressive results on in-domain test datasets, they are limited by their inability to yield reliable uncertainty estimates in domain-shift and out-of-domain (OOD) scenarios.

A Graph Is More Than Its Nodes: Towards Structured Uncertainty-Aware Learning on Graphs

1 code implementation27 Oct 2022 Hans Hao-Hsun Hsu, Yuesong Shen, Daniel Cremers

Current graph neural networks (GNNs) that tackle node classification on graphs tend to only focus on nodewise scores and are solely evaluated by nodewise metrics.

Node Classification Structured Prediction

What Makes Graph Neural Networks Miscalibrated?

1 code implementation12 Oct 2022 Hans Hao-Hsun Hsu, Yuesong Shen, Christian Tomani, Daniel Cremers

Furthermore, based on the insights from this study, we design a novel calibration method named Graph Attention Temperature Scaling (GATS), which is tailored for calibrating graph neural networks.

Graph Attention Multi-class Classification

Deep Combinatorial Aggregation

1 code implementation12 Oct 2022 Yuesong Shen, Daniel Cremers

In this work, we explore a combinatorial generalization of deep ensemble called deep combinatorial aggregation (DCA).

Image Classification

Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised Node Classification

no code implementations27 Jul 2021 Yu Wang, Yuesong Shen, Daniel Cremers

To learn the direct influence among output nodes in a graph, we propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.

Node Classification

A Chain Graph Interpretation of Real-World Neural Networks

1 code implementation30 Jun 2020 Yuesong Shen, Daniel Cremers

It is thus a promising framework that deepens our understanding of neural networks and provides a coherent theoretical formulation for future deep learning research.

Cannot find the paper you are looking for? You can Submit a new open access paper.